
How to use NCryptoki
Author: Ugo Chirico – http://www.ugochirico.com

Data: 2010-09-20

Introduction
PKCS#11 (Public Key Cryptography Standards No. 11) specifications, developed by RSA Data Security labs,

defines an high-level, platform-independent API to cryptographic devices (such as smart cards, USB Tokens,

HSMs, etc.), that hides the low level operational logic of a cryptographic devices, presenting to the

applications a unified abstraction layer for a generic cryptographic token with an higher level set of

functions.

The high flexibility and the simple logic of such a model made the PKCS#11 specifications a de-facto

standard widely used by applications interacting with smart cards. PKCS#11 is largely adopted to access

smart cards, cryptographic tokens and HSMs. Most commercial Certification Authority software uses

PKCS#11 to access the CA signing key or to enroll user certificates as well as cross-platform software that

needs to use smart cards uses PKCS#11, such as Mozilla Firefox and OpenSSL (using an extension).

Because the API is defined in C language, the PKCS#11 module is implemented in C as native library (a

Dinamically Linked Library (.dll) in Windows OS or as Shared Object (.so) on Linux and MacOS) that exports

the functions of the API. This means that if your application is in C/C++ you can easily import the API

functions in your code, But what if your application is in C# or VB.NET? Or what if you application is in

Visual Basic 6 or Delphi? This article addresses this stuffs and explains how to call PKCS#11 API in your .NET

application using the library NCryptoki. The first part shows a brief overview about PKCS#11 specifications.

The second part describes the NCryptoki library and shows how to accomplish the main procedures of a

cryptographic application: key pair generation, certificates creation, encryption and decryption, signature

and verification.

Architecture

A typical Cryptoki-based system architecture is depicted in Figure 1.

Figure 1

The cryptographic device (aka token) is connected to the system via a slot. Typically, a slot corresponds to a

smart card reader or a specific card terminal. However, because Cryptoki offers a purely logical view of the

system it could happens that different slots point to the same physical reader device or, viceversa, a single

slot could have more than one device.

The logical structure of a Token

A specific Cryptoki implementation maps the token’s physical structure, typically composed by memory

zones in which data, cryptographic keys and their digital certificates are stored, into a logical structure that

adheres to the hierarchical model shown in Figure 2.

Figure 2

 The specifications define three main object classes:

- Data objects host generic data which semantics is defined by the application who created them;

- Certificate objects store digital certificates;

- Key objects contain a public, private or secret cryptographic key.

Cryptoki’s objects are classified depending on their visibility in public objects (i.e. accessible by all

applications), and private objects (visible only after granting access permissions typically performed via PIN-

verification as described later), and on their persistency in: token objects which persist when the token is

plugged-out from the slot and in session objects which don’t persist.

For each class of objects the specifications define a set of attributes (as described later) characterizing all

instances of the class, which, are inherited by derived classes, similarly to an object-oriented model (for

example, the Private Key class inherits all attributes from the Key class etc.).

The API

PKCS#11 specifications define an API named Cryptoki (CRYPtographic TOKen Interface) that implements an

API to an abstract model of a cryptographic device, such as a microprocessor-based smart card, a USB

cryptographic token or an HSM. The API follows a simple object-based approach, addressing the goals of

technology independence (any kind of device) and resource sharing (multiple applications accessing

multiple devices), presenting to applications a common, logical view of the device called a cryptographic

token. The API defines the most commonly used cryptographic object types (RSA keys, X.509 Certificates,

DES/Triple DES keys, etc.) and all the functions needed to use, create/generate, modify and delete those

objects:

The addendum A shows the set of the function supplied by Cryptoki API.

The programming language used to define the functions and data types is ANSI C. Along with specifications,

RSA Data Security published three C header files (pkcs11.h, pkcs11t.h and pkcs11f.h, available at this page:

http://www.rsa.com/rsalabs/node.asp?id=2133) that define function prototypes, Cryptoki-specific data

types and a set of macros to manage objects classes and their attributes.

Using the Cryptoki API in a .NET application

As we said above, the API is defined in C language and the PKCS#11 modules are implemented in C as

native unmanaged libraries. In order to use it in a .NET application we have no chance to avoid from using

platform invoke services (P-Invoke), supplied by the .NET framework, to import the unmanaged functions

of the native API in our C# and/or VB.NET managed code. But importing such functions from an unmanaged

dll, expecially from a highly complex PKCS#11 dll, requires very advanced skills in C/C++ and .NET and

compels a lot of tedious work to write the declaration of the prototypes related to the functions using the

P-Invoke rules and to deal with the marshalling of custom parameters.

NCryptoki library allows to avoid from dealing with P-Invoke declarations and unmanaged code saving a lot

of tedious work.

NCryptoki

NCryptoki is a library for .NET framework that implements the PKCS#11 specifications and supplies an API

for C#, VB.NET, Visual Basic 6, Delphi and other COM interop languages for integrating a PKCS#11 compliant

token in any application. It is available as shareware version with full functionalities from the following url:

http://www.ncryptoki.com .

NCryptoki maps the cryptoki's functions defined in PKCS#11 specification in a set of high level classes

usable in C#, VB.NET and propose a programming paradigm that allows to integrate your PKCS#11

compliant token in your applications easily with a few lines of code.

NCryptoki supplies also a COM interface that allows to use the supplied classes in any language that

supports COM interop like Visual Basic 6, Delphi etc.

The main features are:

- Compliant with PKCS#11 2.20 specifications

- Compliant with any PKCS#11 token

- 32 or 64 bit platform

- .NET Framework 2.0, 3.5 and 4.0

The programming paradigm is almost similar to the one in C language described in PKCS#11 specifications:

the PKCS#11 C functions are mapped into a set of .NET classes that follows the same classification

described above. Figure 3 shows the class hierarchy of NCryptoki.

Cryptoki is the main class that allows to use the library, the classes Slot and Token enclose the slot-handling

and token-handling functions, while the class CryptokiObject encapsulates the object-handling functions as

well as the definitions related to objects’ classes and their attributes. The class Session includes the

OpenSession and CloseSession functions, the functions related to login and logout, the search functions to

search for PKCS#11 objects and, finally, the cryptographic and hashing functions and the other functions

defined in the PKCS#11 specifications. The complete API documentation is available here:

http://www.ncryptoki.com/documentation.aspx.

Figure 3

A simple program

Let’s analyze a simple program to see hot to use NCryptoki. The attached Visual Studio project shows the

typical PKCS#11 procedures: initializing the library, searching for some object, generating a key pair, adding

a certificates, encrypting some text and so on.

Instantiate and Initialize a Cryptoki object

Cryptoki constructor takes the path to the native PKCS#11 library. This lines of code create a Cryptoki object

and attach it to the PKCS#11 native library smaoscki.dll, then initialize the library by calling Initialize

method:

Cryptoki cryptoki = new Cryptoki("smaoscki.dll");
int nRet = cryptoki.Initialize();
if (nRet != 0)
{
 error(nRet);
}

Read available slots:

The property Slots contains the available slots:

SlotList slots = cryptoki.Slots;
if (slots.Count == 0)
 throw new Exception("No slots available");

Open a session

To open a session with a toke we have to check if the slots contains a token checking the property

Slot.IsTokenInserted. If so we get a Token object from the slot and open a session with the method

token.OpenSession:

Slot slot = slots[0];
if(!slot.IsTokenInserted)
{
 Console.WriteLine("No token found in the slot: " + slot.Info.Description);
 return;
}

Token token = slot.Token;

// Prints all information relating to the token
TokenInfo tinfo = token.Info;
Console.WriteLine(tinfo.Label);
Console.WriteLine(tinfo.ManufacturerID);
Console.WriteLine(tinfo.Model);
Console.WriteLine(tinfo.SerialNumber);
Console.WriteLine(tinfo.HardwareVersion);

// Opens a read/write serial session
Session session =
 token.OpenSession (Session.CKF_SERIAL_SESSION | Session.CKF_RW_SESSION, null, null);

Login

To login to a session we use Session.Login method that takes as parameters the type of user: USER (simple

user) or SO (Security Officer) and the PIN:

int nRes = session.Login((int)Session.CKU_USER, "12 345678");
if (nRes != 0)
{
 Console.WriteLine("Wrong PIN");
 return;
}

Console.WriteLine("Logged in:" + session.IsLoggedIn);

Search for some objects

In order to search for some object we have to specify the template of the object we want to search for.

Such a template is a sort of filter that allows to get only the objects that match the values in the template.

The following piece of code searches for RSA private keys having the label equals to “MyRSAKey”:

// Sets the template with its attributes
CryptokiCollection template = new CryptokiCollectio n();
template.Add(new ObjectAttribute(ObjectAttribute.CK A_CLASS,
CryptokiObject.CKO_PRIVATE_KEY));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_KEY_TYPE, Key.CKK_RSA));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_LABEL, " MyRSAKey "));

// Launchs the search with the template just create d
CryptokiCollection objects = session.Objects.Find(t emplate, 10);
// If the private keys is found continue
if (objects.Count > 0)
{
 foreach (Object obj in objects)
 {
 Console.WriteLine(((PrivateKey)obj).Label) ;
 }

 //Gets the first object found
 RSAPrivateKey privateKey;
 privateKey = (RSAPrivateKey)objects[objects.Cou nt - 1];
 Console.WriteLine(privateKey.Label);
}

Generate a key pair

In order to generate a key pair we have to specify the key pair’s attributes needed to generate the key pair

such as: key type, generation algorithm, label, and so on. This can be done by using a template in which we

save all key’s attributes:

// Prepares the templates for public key
CryptokiCollection templatePub = new CryptokiCollec tion();
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_CLASS,
CryptokiObject.CKO_PUBLIC_KEY));
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_TOKEN, true));
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_PRIVATE, false));
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_LABEL, "Ugo's new Key"));
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_ID, "1"));
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_MODULUS_BITS, 1024));
templatePub.Add(new ObjectAttribute(ObjectAttribute .CKA_PUBLIC_EXPONENT, 0x010001));

// Prepares the templates for private key
CryptokiCollection templatePri = new CryptokiCollec tion();
templatePri.Add(new ObjectAttribute(ObjectAttribute .CKA_CLASS,
CryptokiObject.CKO_PRIVATE_KEY));
templatePri.Add(new ObjectAttribute(ObjectAttribute .CKA_TOKEN, true));
templatePri.Add(new ObjectAttribute(ObjectAttribute .CKA_PRIVATE, true));
templatePri.Add(new ObjectAttribute(ObjectAttribute .CKA_LABEL, "Ugo's new Key"));
templatePri.Add(new ObjectAttribute(ObjectAttribute .CKA_ID, "1"));

//generate the key pair objects
Key[] keys = session.GenerateKeyPair(Mechanism.RSA_ PKCS_KEY_PAIR_GEN, templatePub,
templatePri);

// gets the two generated keys
RSAPrivateKey privateKey = (RSAPrivateKey)keys[1];
RSAPublicKey publicKey = (RSAPublicKey)keys[0];

Create a Certificate object

To create a Certificate object we have to use a template again to specify the certificate’s attributes:

// Load a X509 certificate from a file
X509Certficate2 cert = new X509Certificate2(“cert.c er”);

// Creates the template
CryptokiCollection template = new CryptokiCollectio n();
template.Add(new ObjectAttribute(ObjectAttribute.CK A_CLASS,
CryptokiObject.CKO_CERTIFICATE));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_SUBJECT, cert.SubjectName.RawData));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_ISSUER, cert.Issuer));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_SERIAL_NUMBER, cert.SerialNumber));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_ID, id));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_LABEL, label));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_TOKEN, true));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_VALUE, cert.RawData));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_MODIFIABLE, modifiable));

// Creates a Certificate object
CryptokiObject certificate = CurrentSession.Objects .Create(template);

Create a Data object

To create a Data object we have to use a template to specify the object’s attributes:

CryptokiCollection template = new CryptokiCollectio n();
template.Add(new ObjectAttribute(ObjectAttribute.CK A_CLASS, CryptokiObject.CKO_DATA));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_LABEL, label));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_APPLICATION, application));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_TOKEN, true));
template.Add(new ObjectAttribute(ObjectAttribute.CK A_PRIVATE, true);
template.Add(new ObjectAttribute(ObjectAttribute.CK A_MODIFIABLE, true);
template.Add(new ObjectAttribute(ObjectAttribute.CK A_VALUE, value));

// Creates the Data object
Data data = (Data)session.Objects.Create(template);

Encrypt and decrypt

To encrypt some text we use Session.EncryptInit and Session.Encrypt methods. To decrypt some cipher text

we use Session.DecryptInit and Session.Decrypt methods.

EncryptInit takes as parameters the encryption algorithm and the key object (obtained by a call to Find

method - see above) to use in encryption.

DecryptInit takes as parameters the decryption algorithm and the key object (obtained by a call to Find

method - see above) to use in decryption.

string helloworld1 = "Hello World to encrypt";
byte[] text = Encoding.ASCII.GetBytes(helloworld1);

// launches the encryption operation DES mechanism
nRes = session.EncryptInit(Mechanism.DES, deskey);

// computes the encryption
byte[] encrypted = session.Encrypt(text);

// launches decryption
nRes = session.DecryptInit(Mechanism.DES, key);

// computes the decryption
byte[] decrypted = session.Decrypt(encrypted);

 Sign and Verify

To sign some text we use Session.SignInit and Session.Sign methods. To verify the signature we use

Session.VerifyInit and Session.Verify.

SignInit takes as parameters the signature algorithm and the private key object (obtained by a call to Find

method - see above) to use to apply the signature.

VerifyInit takes as parameters the signature algorithm and the public key object (obtained by a call to Find

method - see above) to use to verify the signature.

string helloworld2 = "Hello World to sign";
byte[] text = Encoding.ASCII.GetBytes(helloworld2);

// launches the digital signing operation with a RS A_PKCS mechanism
nRes = session.SignInit(Mechanism.SHA1_RSA_PKCS, pr ivateKey);

// computes the signature
byte[] signature = session.Sign(text);

// Initializes the verification function
nRes = session.VerifyInit(Mechanism.SHA1_RSA_PKCS, publicKey);

// verifies the signature
nRes = session.Verify(text, signature);
if(nRes == 0)
 Console.Write("Verify " + nRes);

COM Interop

All NCryptoki classes are exported under COM interop, this means the they can be also used in a Visual

Basic 6 (and VBA and VBScript) application as COM objects and in any of the other languages that support

COM interop like Delphi, etc. In this paper we don’t cover this stuff explicitly because the COM classes

exported by the library are the same as described above and must be used in the same way. For more info

and samples about using NCryptoki classes as COM objects visit: http://www.ncryptoki.com.

Conclusion

NCryptoki makes easy to use HSMs and smart cards in any .NET application and allows to save a lot of

development time. A bit of knowledge of PKCS#11 is needed, of course, but a beginner knowledge of C# is

enough to use the library. As of this writing, the current version 1.5 is compliant with the version 2.20 of

the PKCS#11 specifications. Next version will be compliant with the new PKCS#11 specification 2.30,

published in April 2009.

News, updates, more detailed documentation can be found at http://www.ncryptoki.com.

Bibliography:

[1] Programming Smart Cards - Part 1, Ugo Chirico, 2009 - http://www.ugosweb.com/publications.aspx

[2] Programming Smart Cards - Part 2, Ugo Chirico, 2009 - http://www.ugosweb.com/publications.aspx

[3] PKCS #11 v2.20: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

Addendum A:

List of cryptoki functions:

Function/Category Description

Library Management Functions

C_Initialize Initializes the library

C_Finalize Frees all resources allocated by the library

C_GetInfo Reads all information relating to the library

C_GetFunctionList Returns the list of library-implemented functions

Slot and Token Management Functions

C_GetSlotList Returns the list of connected slots

C_GetSlotInfo Reads all information relating to a specific slot

C_GetTokenInfo Reads all information relating to the token inserted in the specified slot

C_WaitForSlotEvent Waits for an event on the slot (i.e. token insertion or removal, etc.)

C_GetMechanismList Returns the list of library-supported cryptographic mechanisms

C_GetMechanismInfo Returns all information relating to the specified cryptographic mechanism

C_InitToken Initializes the token

C_InitPIN Initializes the token’s PIN

C_SetPIN Sets the token’s PIN

Session Management Functions

C_OpenSession Opens a session with a token in the specified slot

C_CloseSession Closes a session

C_CloseAllSessions Closes all opened sessions

C_GetSessionInfo Reads all information relating to the specified session

C_GetOperationState Returns the session’s cryptographic status

C_SetOperationState Sets the session’s cryptographic status

C_Login Executes the user login

C_Logout Executes the user logout

Object Management Functions

C_CreateObject Creates a new object on the token

C_CopyObject Creates a new copy of the specified object

C_DestroyObject Deletes an object on the token

C_GetObjectSize Returns the size of the specified object

C_GetAttributeValue Reads the value of an attribute of the specified object

C_SetAttributeValue Sets the value of an attribute of the specified object

C_FindObjectsInit Initializes the object lookup mechanism

C_FindObjects Returns the next object found

C_FindObjectsFinal Terminates the current objects lookup

Ciphering Functions

C_EncryptInit Initializes the ciphering operation

C_Encrypt Encrypts a single data set

C_EncryptUpdate Continues the current ciphering operation adding new data being ciphered

C_EncryptFinal Terminates the current ciphering operation

Deciphering Functions

C_DecryptInit Initializes the deciphering operation

C_Decrypt Deciphers a single set of data

C_DecryptUpdate Continues the current deciphering operation adding new data being deciphered

C_DecryptFinal Terminates the current deciphering operation

Hashing Functions

C_DigestInit Initializes the hashing operation

C_Digest Calculates the hash value of a single data set

C_DigestUpdate Continues the current hashing operation adding new data to the hash calculation

C_DigestKey Calculates the hash value of the specified Key object

C_DigestFinal Terminates the current hashing operation

Digital Signing Functions

C_SignInit Initializes the digital signing operation

C_Sign Signs a single set of data

C_SignUpdate Continues the current digital signing operation adding new data being signed

C_SignFinal Terminates the current digital signing operation

C_SignRecoverInit Initializes the sign operation where data being signed are retrieved in the given digital signature

C_SignRecover Signs a single data set retrieved using the specified digital sign

Digital-Sign-Check Functions

C_VerifyInit Initializes the digital signature-verification operation

C_Verify Verifies the signature applied to a single data set

C_VerifyUpdate Continue the current digital-sign-check operation adding new data being checked

C_VerifyFinal Terminates the current digital-signature-verification operation

C_VerifyRecoverInit Init the sign-verify operation where data being checked are retrieved in the given signature

C_VerifyRecover Verifies the digital signature applied to a single data set retrieved by the given digital signature

Cryptographic Keys Management Functions

C_GenerateKey Generates a symmetric key

C_GenerateKeyPair Generates a cryptographic key pair

C_WrapKey Exports a key encrypted by using the specified key

C_UnwrapKey Imports a key encrypted by using the specified key

C_DeriveKey Generates a new symmetric key derived from a master key

Radom Numbers Generation Functions

C_SeedRandom Sets the seed value for random numbers generation

C_GenerateRandom Generates a new random number

Advanced Cryptographic Functions

C_DigestEncryptUpdate Continues the current hash and encrypt operations adding new data being processed

C_DecryptDigestUpdate Continues the current decrypt and hash operations adding new data being processed

C_SignEncryptUpdate Continues the current sign and encrypt operations updating the data being processed

C_DecryptVerifyUpdate Continues the current decrypt and verify operations updating the data being processed

Parallel Management Functions

C_GetFunctionStatus Backward compatibility, always returns CKR_FUNCTION_NOT_PARALLEL

C_CancelFunction Backward compatibility, always returns CKR_FUNCTION_NOT_PARALLEL

